Asymmetric kernel in Gaussian Processes for learning target variance
نویسندگان
چکیده
This work incorporates the multi-modality of the data distribution into a Gaussian Process regression model. We approach the problem from a discriminative perspective by learning, jointly over the training data, the target space variance in the neighborhood of a certain sample through metric learning. We start by using data centers rather than all training samples. Subsequently, each center selects an individualized kernel metric. This enables each center to adjust the kernel space in its vicinity in correspondence with the topology of the targets — a multi-modal approach. We additionally add descriptiveness by allowing each center to learn a precision matrix. We demonstrate empirically the reliability of the model. c © 2018 Elsevier Ltd. All rights reserved.
منابع مشابه
Learning Rates for Kernel-Based Expectile Regression
Conditional expectiles are becoming an increasingly important tool in finance as well as in other areas of applications. We analyse a support vector machine type approach for estimating conditional expectiles and establish learning rates that are minimax optimal modulo a logarithmic factor if Gaussian RBF kernels are used and the desired expectile is smooth in a Besov sense. As a special case, ...
متن کاملRandom walk kernels and learning curves for Gaussian process regression on random graphs
We consider learning on graphs, guided by kernels that encode similarity between vertices. Our focus is on random walk kernels, the analogues of squared exponential kernels in Euclidean spaces. We show that on large, locally treelike, graphs these have some counter-intuitive properties, specifically in the limit of large kernel lengthscales. We consider using these kernels as covariance matrice...
متن کاملFocused Multi-task Learning Using Gaussian Processes
Given a learning task for a data set, learning it together with related tasks (data sets) can improve performance. Gaussian process models have been applied to such multi-task learning scenarios, based on joint priors for functions underlying the tasks. In previous Gaussian process approaches, all tasks have been assumed to be of equal importance, whereas in transfer learning the goal is asymme...
متن کاملAsymmetric Transfer Learning with Deep Gaussian Processes
We introduce a novel Gaussian process based Bayesian model for asymmetric transfer learning. We adopt a two-layer feed-forward deep Gaussian process as the task learner of source and target domains. The first layer projects the data onto a separate non-linear manifold for each task. We perform knowledge transfer by projecting the target data also onto the source domain and linearly combining it...
متن کاملMultiple Kernel Learning and Automatic Subspace Relevance Determination for High-dimensional Neuroimaging Data
Alzheimer’s disease is a major cause of dementia. Its diagnosis requires accurate biomarkers that are sensitive to disease stages. In this respect, we regard probabilistic classification as a method of designing a probabilistic biomarker for disease staging. Probabilistic biomarkers naturally support the interpretation of decisions and evaluation of uncertainty associated with them. In this pap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018